Comparing variables
Identify similarities and differences between variables and explore potential associations. Use distributions, numerical summaries, and simulations to compare groups based on numerical or categorical data.
K–2 Competencies
Describe similarities or differences across two variables.
Classroom resources
K-2 Favorite Fruit Case Cards
The purpose of this lesson is to teach students how to collect, organize, and analyze data using multiple attributes through the creation of "case cards." Students will explore fruit preferences while learning to categorize data using various criteria and make comparisons across different characteristics.
Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling
Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗
Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.
3–5 Competencies
Observe whether or not there appears to be an association between two variables. e.g., student height compared to shoe size vs. student height compared to favorite color
Classroom resources
Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling
Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗
Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.
6–8 Competencies
Use reasoning about distributions to compare two groups based on quantitative variables.
Classroom resources
Middle School Drought Analysis
The purpose of this lesson is to develop students' data literacy skills through analyzing real drought data from their state or region. Students will explore climate patterns, create visualizations, draw evidence-based conclusions, and communicate findings effectively while learning to evaluate data sources, identify patterns, and understand the ethical implications of data analysis.
Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling
Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗
Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.
9–10 Competencies
Use numerical measures such as average, standard deviation and quartiles to compare two groups.
Classroom resources
Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling
Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗
Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.
11–12 Competencies
Use simulations to investigate associations between two categorical variables and to compare groups.
Classroom resources
Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling
Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗
Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.
Advanced Competencies
Classroom resources
Support other teachers by sharing a resource
Do you have a lesson plan, video, or tip that could help others teaching this topic?
Share feedback on the Learning Progressions
Your feedback helps us improve these progressions for teachers around the world. Thank you!
Share feedback on the Learning Progressions
Your feedback helps us improve these progressions for teachers around the world. Thank you!
Share a classroom resource
Suggesting a resource helps students around the world learn essential data science skills.